% 1 - ορισμός. Τι είναι το Танталовые сплавы
Diclib.com
Διαδικτυακό λεξικό

Τι (ποιος) είναι Танталовые сплавы - ορισμός

СМЕСЬ МЕТАЛЛОВ
Сплавы; Сплавы (металлов)

Танталовые сплавы      

сплавы на основе Тантала. Кристаллическая структура тантала, размеры атома (атомный радиус 1,46 Å), положение в ряду электроотрицательности определяют его склонность образовывать со многими металлами Твёрдые растворы и Металлиды. Непрерывные ряды твёрдых растворов тантал образует с металлами, имеющими изоморфную кристаллическую структуру, примерно тот же размер атома и близко расположенными в ряду электроотрицательности, например с Nb, W, Mo, V, β-Ti и др. Ограниченные твёрдые растворы и металлиды образуются при большем различии в размерах атома и электроотрицательности, например с Al, Au, Be, Si, Ni. С Li, К, Na, Mg и некоторыми др. элементами тантал практически не образует ни твёрдых растворов, ни соединений.

Т. с. характеризуются высокими механическими свойствами при обычной температуре, жаропрочностью, коррозионной устойчивостью; они более экономичны, чем чистый тантал. Очень важны Т. с. с ниобием, наиболее близкие по свойствам к танталу, которые могут заменить дефицитный тантал во многих областях его применения. Особый интерес представляют жаропрочные Т. с. Тантал наряду с вольфрамом, молибденом и ниобием относят к "большой четвёрке" металлов, наиболее перспективных для создания на их основе высокотемпературных конструкционных материалов для самолётов, ракет, космических кораблей и т. п. Обычно тантал легируют W, Mo, V, Nb, Ti, Zr, Hf, Re, Cr, С и др. элементами. Из многих жаропрочных Т. с. наиболее важны сплавы с вольфрамом. Так, предел прочности при растяжении сплава с 10\% W равен (Мн/м2) 1265 (20 °С), то есть намного больше, чем для тантала; 661 (980 °С); 148 (1430 °С); 84 (1650 °С), или соответственно 126,5; 66,1; 14,8 и 8,4 кгс/мм2, относительное удлинение при тех же температурах 4,0; 4,2; 17,0 и 33,0\%. Этот сплав более пластичен, чем вольфрам, не уступает ему по прочности и превосходит по сопротивлению окислению при температурах до 2800 °С; из него изготовляют детали камеры сгорания и сопла реактивных двигателей, передние кромки оперения самолётов. Для тех же целей применяют сплав с 8\% W и 2\% Hf, имеющий по сравнению со всеми другими деформируемыми жаропрочными сплавами наибольшую удельную прочность при высоких температурах. Пластичный сплав с 8\% W и 2,5\% Re предложен для изготовления нагревателей промышленных печей, теплозащитной обшивки и деталей ядерных силовых установок космических аппаратов.

В электронной технике применяют Т. с. с высокими электрическим сопротивлением и термоэмиссионными свойствами, содержащие до 7,5\% W. По коррозионной стойкости Т. с., как правило, не могут конкурировать с чистым танталом, но иногда легированием удаётся повысить коррозионную стойкость металла; например, Т. с., содержащие более 18\% W, почти не корродируют в 20\%-ной плавиковой кислоте.

В производстве высокотемпературных и др. материалов перспективны бериллид тантала (в конструкциях авиационной и космической техники для изготовления деталей, работающих при температурах около 1500 °С), бориды тантала (покрытие листов тантала, контактирующих с расплавленными ураном и кальцием), силициды, нитриды и карбиды (материал оболочки тепловыделяющих элементов (См. Тепловыделяющий элемент)) тантала. Карбид TaC - важная составная часть некоторых металлокерамических твёрдых сплавов; например, в Японии в 1972 из общего количества потребленного тантала, равного 83т, 40т израсходовано в твердосплавной промышленности, а в США в 1973 из 600 т тантала 85-90 т использовано в виде карбида в производстве твёрдых сплавов. Ферротанталониобий иногда применяют для присадки в некоторые стали с целью предотвращения межкристаллитной коррозии и улучшения др. свойств, но из-за дефицитности тантала в этом случае предпочтительнее феррониобий. Дефицитность и относительно высокая стоимость тантала препятствуют его широкому применению и в виде Т. с.

Лит.: Тугоплавкие материалы в машиностроении. Справочник, М., 1967.

О. П. Колчин.

ЖАРОСТОЙКИЕ СПЛАВЫ         
  • Роллс-Ройс «Нин»]], экспонируемого в Музее науки, Лондон.
  • лопатка]] ротора турбины двигателя [[RB199]], из литейного никелевого жаропрочного сплава, бывшая в эксплуатации.
Суперсплавы; Тугоплавкие сплавы; Жаропрочный сплав; Жаростойкие сплавы; Окалиностойкие сплавы; Суперсплав
сплавы на никелевой, железной или железоникелевой основе, содержащие хром, кремний, алюминий, которые образуют (вместе с металлом основы) на поверхности сплава защитные оксидные пленки. Обладают повышенным сопротивлением химическому взаимодействию с газами при высоких температурах.
Жаропрочные сплавы         
  • Роллс-Ройс «Нин»]], экспонируемого в Музее науки, Лондон.
  • лопатка]] ротора турбины двигателя [[RB199]], из литейного никелевого жаропрочного сплава, бывшая в эксплуатации.
Суперсплавы; Тугоплавкие сплавы; Жаропрочный сплав; Жаростойкие сплавы; Окалиностойкие сплавы; Суперсплав

сплавы, имеющие высокое сопротивление ползучести и разрушению при высоких температурах. Применяются как конструкционный материал для деталей двигателей внутреннего сгорания, паровых и газовых турбин, реактивных двигателей, атомно-энергетических установок и др. Высокая Жаропрочность сплавов определяется двумя основными физическими факторами - прочностью межатомных связей в сплаве и его структурой. Обычно необходимую для высокой прочности структуру получают термической обработкой, приводящей к гетерогенизации микроструктуры, чаще всего дисперсионным твердением. В этом случае упрочнение обусловлено главным образом появлением в сплавах равномерно, распределённых весьма мелких частиц химических соединений (интерметаллидов, карбидов и др.) и микроискажениями кристаллической решётки основы сплава, вызванными наличием этих частиц. Соответствующая структура Ж. с. затрудняет образование и движение дислокаций (См. Дислокации), а также повышает количество связей между атомами, одновременно участвующими в сопротивлении деформации. С др. стороны, высокое значение величины межатомных связей позволяет сохранить необходимую структуру при высоких температурах длительное время.

Ж. с. по условиям службы можно разделить на 3 группы: сплавы, которые подвергаются значительным, но кратковременным (секунды - часы) механическим нагрузкам при высоких температурах; сплавы, которые находятся под нагрузкой при высоких температурах десятки и сотни часов; сплавы, которые предназначены для работы в условиях больших нагрузок и высоких температур в течение тысяч, десятков, а иногда сотен тысяч часов. В зависимости от этого существенно меняются требования к структуре сплава. Например, любая причина, обусловливающая неустойчивость структуры сплава при рабочих условиях, вызывает ускорение процессов деформирования и разрушения. Поэтому сплавы, предназначенные для длительной службы, подвергаются специальной стабилизирующей обработке, которая, хотя и может привести к некоторому снижению прочности при кратковременном нагружении, делает сплав более устойчивым к длительному воздействию нагрузок.

Ж. с. классифицируют по их основе: никелевые, железные, титановые, бериллиевые и др. Название по основе даёт представление об интервале рабочих температур, который в зависимости от приложенных нагрузок и длительности их действия составляет 0,4-0,8 температуры плавления основы. Разновидностью Ж. с. являются Композиционные материалы (сплавы, упрочнённые дисперсными частицами тугоплавких окислов или высокопрочными волокнами). Такие материалы характеризуются чрезвычайно высокой стабильностью свойств, мало зависящих от времени пребывания при высоких температурах. В зависимости от назначения Ж. с. изготовляют с повышенным сопротивлением усталости и эрозии, с малой чувствительностью к надрезам, термостойкие, для эксплуатации при значительных, но кратковременных нагрузках и др. Например, Ж. с., используемые в космической технике, должны иметь низкую испаряемость.

Лит.: Гарофало Ф., Законы ползучести и длительной прочности металлов и сплавов, пер. с англ., М., 1968; Курдюмов Г. В., Природа упрочненного состояния металлов, "Металловедение и термическая обработка металлов", 1960, № 10; Розенберг В. М., Ползучесть металлов, М., 1967; Химушин Ф. Ф., Жаропрочные стали и сплавы, 2 изд., М., 1969.

В. М. Розенберг.

Βικιπαίδεια

Сплав

Сплав — макроскопически однородный металлический материал, состоящий из смеси двух или большего числа химических элементов с преобладанием металлических компонентов.

Сплавы состоят из основы (одного или нескольких металлов), малых добавок специально вводимых в сплав легирующих и модифицирующих элементов, а также из неудалённых примесей (природных, технологических и случайных).

Сплавы являются одним из основных конструкционных материалов. Среди них наибольшее значение имеют сплавы на основе железа и алюминия. В технике применяется более 5 тыс. сплавов.